Self-Organisation, Thermotropic and Lyotropic Properties of Glycolipids Related to their Biological Implications
نویسندگان
چکیده
Glycolipids are amphiphilic molecules which bear an oligo- or polysaccharide as hydrophilic head group and hydrocarbon chains in varying numbers and lengths as hydrophobic part. They play an important role in life science as well as in material science. Their biological and physiological functions are quite diverse, ranging from mediators of cell-cell recognition processes, constituents of membrane domains or as membrane-forming units. Glycolipids form an exceptional class of liquid-crystal mesophases due to the fact that their self-organisation obeys more complex rules as compared to classical monophilic liquid-crystals. Like other amphiphiles, the supra-molecular structures formed by glycolipids are driven by their chemical structure; however, the details of this process are still hardly understood. Based on the synthesis of specific glycolipids with a clearly defined chemical structure, e.g., type and length of the sugar head group, acyl chain linkage, substitution pattern, hydrocarbon chain lengths and saturation, combined with a profound physico-chemical characterisation of the formed mesophases, the principles of the organisation in different aggregate structures of the glycolipids can be obtained. The importance of the observed and formed phases and their properties are discussed with respect to their biological and physiological relevance. The presented data describe briefly the strategies used for the synthesis of the used glycolipids. The main focus, however, lies on the thermotropic as well as lyotropic characterisation of the self-organised structures and formed phases based on physico-chemical and biophysical methods linked to their potential biological implications and relevance.
منابع مشابه
Physicochemical characterization of natural-like branched-chain glycosides toward formation of hexosomes and vesicles.
Synthetic branched-chain glycolipids have become of great interest in biomimicking research, since they provide a suitable alternative for natural glycolipids, which are difficult to extract from natural resources. Therefore, branched-chain glycolipids obtained by direct syntheses are of utmost interest. In this work, two new branched-chain glycolipids are presented, namely, 2-hexyldecyl β(α)-D...
متن کاملThermotropic and lyotropic behaviour of new liquid-crystalline materials with different hydrophilic groups: synthesis and mesomorphic properties
Several new calamitic liquid-crystalline (LC) materials with flexible hydrophilic chains, namely either hydroxy groups or ethylene glycol units, or both types together, have been synthesized in order to look for new functional LC materials exhibiting both, thermotropic and lyotropic behaviour. Such materials are of high potential interest for challenging issues such as the self-organization of ...
متن کاملMolecular dynamics study of anhydrous lamellar structures of synthetic glycolipids: effects of chain branching and disaccharide headgroup.
Glycolipids form materials of considerable potential for a wide range of surfactant and thin film applications. Understanding the effect of glycolipid covalent structure on the properties of their thermotropic and lyotropic assemblies is a key step toward rational design of new glycolipid-based materials. Here, we perform molecular dynamics simulations of anhydrous bilayers of dodecyl β-maltosi...
متن کاملSupramolecular Chemistry and Self-assembly
Molecules in the liquid crystalline (LC) state, although still mobile, have an orientational ordering that depends on external conditions, such as temperature or electric fields (1, 2). The best known example would be the thermotropic LC materials, which exhibit different phases as a function of temperature, that are used in displays (3). In contrast to these high-tech materials, biological sel...
متن کاملAlkyl-bis(imidazolium) salts: a new amphiphile platform that forms thermotropic and non-aqueous lyotropic bicontinuous cubic phases.
New ionic amphiphiles with a hexyl-bridged bis(imidazolium) headgroup; Br(-), BF4(-), or Tf2N(-) anions; and a long n-alkyl tail can form thermotropic bicontinuous cubic liquid crystal phases in neat form and/or lyotropic bicontinuous cubic phases with several non-aqueous solvents or water.
متن کامل